

An Introduction to Electro-analytical Chemistry

Subject: Chemistry

Subject Code: EAS-206

Dr. Raj Kumar

Assistant Professor

Department of Chemistry

School of Basic & Applied Sciences

Maharaja Agrasen University

Email: rajkumar@mau.edu.in

Objectives

To Understand the fundamental concepts of electrochemistry.
Differentiate between galvanic and electrolytic cells.
Explore the role of oxidation and reduction in electrochemica reactions.
Analyze electron flow, electrode reactions, and cell potentials.
Examine electrolysis and its applications in industrial processes.
Interpret standard cell notation and conventions.

Summary

Electrochemistry

The study of the interchange of chemical and electrical energy

Oxidation is the loss of electrons (Increase in charge).

Reduction is the gain of electrons (Decrease in charge)

Electrochemical Cells:

1. Galvanic Cells:

Produces electrical current

 $Cu^{2+} + 2e^{-} \implies Cu \quad E^{0} = +0.34 \text{ V}$ $Zn^{2+} + 2e^{-} \implies Zn E^{0} = -0.76V$

spontaneous chemical reactions

$$Cu^{2+} + Zn \implies Cu + Zn^{2+} \quad E^0 = 0.34 - (-0.76) = 1.10 \text{ V}$$

Electrolytic Cells

Consumes electrical current $Zn^{2+} + Cu \subseteq Zn + Cu^{2+}$

 $E^0 = -1.10 \text{ V}$

non-spontaneous and require external e-source

(DC power source)

Parts of the voltaic or galvanic cell...

Anode \rightarrow the electrode where oxidation occurs

After a period of time, the anode may appear to become smaller as it falls into solution.

Cathode \rightarrow the anode where reduction occurs

After a period of time it may appear larger, due to ions from solution plating onto it.

Salt Bridge → a device used to maintain electrical neutrality in a galvanic cell

This may be filled with agar which contains a neutral salt or it may be replaced with a porous cup.

Electron Flow \rightarrow always from anode to cathode (through the wire)

Maharaja Agrasen University

Parts of the voltaic or galvanic cell...

Anode

Cathode

Example of a Galvanic cell

The diagram to the right illustrates what really happens when a Galvanic cell is constructed from zinc sulfate and copper (II) sulfate using the respective metals as electrodes.

Electrolytic cells

Electrolysis of molten sodium chloride

- None spontaneous reaction converted to spontaneous reaction
- ☐ Electrical energy converted into chemical energy

Barrier porous to ion flow

Conduction in Electrochemical cells:

- a. External connection → Movement of electrons through the external wire.
- b. Within the solution \rightarrow migration of cations and anions
- c. At the electrode surface \rightarrow Oxidation/Reduction reaction

Membrane cell

A simplified drawing of a membrane cell for the production of NaOH and Cl2 gas from a saturated, **aqueous solution of NaCl** (brine).

Maharaja Agrasen University

Electrolysis from aqueous solution

Consider electrolysis of aqueous NaCl. The process become complex in the presence of water as the water itself can be oxidized or reduced.

Cathode –

H₂ is released

Anode –

O₂ is released for dilute NaCl

Cl₂ is released for conc. NaCl

Experimental results

Cathode: 2 competing reactions

$$2H_2O + 2e \rightarrow H2 + 2OH^- E^0 = -0.83 V$$

$$E^{o} = -0.83 \text{ V}$$

$$Na^+ + e \rightarrow Na + OH^-$$

$$E^{o} = -2.71 \text{ V}$$

H2O with higher red. potential is reduced.

Anode: 2 competing reactions

$$2H_2O \rightarrow O_2 + 4H^+ + 4e$$

$$E^{o} = -1.23 \text{ V}$$

$$2Cl^{-} \rightarrow Cl_2 + 2e$$

$$E^{o} = -1.36 \text{ V}$$

The oxidation pot for H2O is a little higher and since the conc of Cl⁻ is low H₂O is oxidized. However, if high conc. Of is used NaCl, due to the concentration effect Cl is oxidized.

Cathodes and Anodes

→ Cathode of an electrochemical cell is the electrode at which reduction occurs

$$Cu^{2+} + 2e^{-} \rightarrow Cu(s)$$

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$
 $Zn^{2+} + 2e^{-} \leftrightarrow Zn(s)$

→ Anode of an electrochemical cell is the electrode at which oxidation

$$Cu(s) \rightarrow Cu^{2+} + 2e^{-}$$

$$H_2(aq) \rightarrow 2H^+(aq) + 2e^-$$

Standard Cell Notation (line notation)

- Conventions:
- → Anode on Left

→ Single line : represent phase boundaries

→ Two line: represent liquid junction

Anode / anode solution // cathode solution / Cathode

Example: $Zn / Zn^{2+} (1.0 \text{ M}) / Cu^{2+} (1.0 \text{ M}) / Cu$

Maharaja Agrasen University

Summary

- ➤ Electrochemistry deals with the conversion between chemical and electrical energy.
- ➤ Galvanic cells generate electrical energy from spontaneous chemical reactions, while electrolytic cells require an external power source for non-spontaneous reactions.
- ➤ Key components include anode (oxidation site), cathode (reduction site), salt bridge, and electron flow direction.
- Electrolysis allows the breakdown of compounds, such as in sodium chloride electrolysis for NaOH and Cl₂ production.
- > Standard cell notation helps in representing and understanding electrochemical reactions systematically.

Suggested Readings

- "Chemistry: The Central Science" Brown, LeMay, Bursten, Murphy, Woodward
- "Physical Chemistry" Peter Atkins, Julio de Paula
 - (Comprehensive and widely used)
- "Electrochemical Methods: Fundamentals and Applications" Allen
 J. Bard, Larry R. Faulkner